3.2: Evaluating Algebraic Expressions (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    22474
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In this section we will evaluate algebraic expressions for given values of the variables contained in the expressions. Here are some simple tips to help you be successful.

    Tips for Evaluating Algebraic Expressions

    1. Replace all occurrences of variables in the expression with open parentheses. Leave room between the parentheses to substitute the given value of the variable.
    2. Substitute the given values of variables in the open parentheses prepared in the first step.
    3. Evaluate the resulting expression according to the Rules Guiding Order of Operations.

    Let's begin with an example.

    Example 1

    Evaluate the expression \(x^2 − 2xy + y^2\) at \(x = −3\) and \(y = 2\).

    Solution

    Following “Tips for Evaluating Algebraic Expressions,” first replace all occurrences of variables in the expression x2 − 2xy + y2 with open parentheses.

    \[ x^2 -2xy + y^2 = ( ~ )^2 -2(~)(~) + ( ~ )^2 \nonumber\nonumber \]

    Secondly, replace each variable with its given value, and thirdly, follow the “Rules Guiding Order of Operations” to evaluate the resulting expression.

    \[ \begin{aligned} x^2 -2xy + y^2 ~ & \textcolor{red}{ \text{ Original expression.}} \\ =( \textcolor{red}{-3} )^2 -2 ( \textcolor{red}{-3})( \textcolor{red}{2}) + (\textcolor{red}{2})^2 ~ & \textcolor{red}{ \text{ Substitute } -3 \text{ for } x \text{and 2 for }y.} \\ =9-2(-3)(2)+4 ~ & \textcolor{red}{ \text{ Evaluate exponents first.}} \\ = 9-(-6)(2)+4 ~ & \textcolor{red}{ \text{ Left to right, multiply } 2(-3)=-6.} \\ =9-(-12)+4 ~ & \textcolor{red}{ \text{ Left to right, multiply: } (-6)(2) = -12.} \\ = 9 + 12 + 4 ~ & \textcolor{red}{ \text{ Add the opposite.}} \\ = 25 ~ & \textcolor{red}{ \text{ Add.}} \end{aligned}\nonumber \]

    Exercise

    If x = −2 and y = −1, evaluate x3y3.

    Answer

    −7

    Example 2

    Evaluate the expression (ab)2 If a = 3 and b = −5, at a = 3 and b = −5.

    Solution

    Following “Tips for Evaluating Algebraic Expressions,” first replace all occurrences of variables in the expression (ab)2 with open parentheses.

    \[ (a-b)^2 = (()-())^2\nonumber \]

    Secondly, replace each variable with its given value, and thirdly, follow the “Rules Guiding Order of Operations” to evaluate the resulting expression.

    \[ \begin{aligned} (a-b)^2 = (( \textcolor{red}{3})-( \textcolor{red}{-5}))^2 ~ & \textcolor{red}{ \text{ Substitute 3 for } a \text{ and } -5 \text{ for } b.} \\ = (3+5)^2 ~ & \textcolor{red}{ \text{ Add the opposite: } (3)-(-5)=3+5} \\ = 8^2 ~ & \textcolor{red}{ \text{ Simplify inside parentheses: } 3+5 = 8} \\ =64 ~ & \textcolor{red}{ \text{ Evaluate exponent: } 8^2 = 64} \end{aligned}\nonumber \]

    Exercise

    If a = 3 and b = −5, evaluate a2b2.

    Answer

    −16

    Example 3

    Evaluate the expression |a|−|b| at a = 5 and b = −7.

    Solution

    Following “Tips for Evaluating Algebraic Expressions,” first replace all occurrences of variables in the expression |a|−|b| with open parentheses.

    \[ |a| - |b| = |( ~ )| - |( ~ )|\nonumber \]

    Secondly, replace each variable with its given value, and thirdly, follow the “Rules Guiding Order of Operations” to evaluate the resulting expression.

    \[ \begin{aligned} |a| - |b| = |( \textcolor{red}{5} )| = |( \textcolor{red}{-7})| ~ & \textcolor{red}{ \text{ Substitute 5 for } a \text{ and } -7 \text{ for } b.} \\ = 5 - 7 ~ & \textcolor{red}{ \text{ Absolute values first: } |(5)| = 5 \text{ and } |(-7)|=7|} \\ =5+(-7) ~ & \textcolor{red}{ \text{ Add the opposites: } 5 - 7 = 5+(-7).} \\ =-2 ~ & \textcolor{red}{ \text{ Add: } 5+(-7)=-2.} \end{aligned}\nonumber \]

    Exercise

    If a = 5 and b = −7, evaluate 2|a| − 3|b|.

    Answer

    −11

    Example 4

    Evaluate the expression |ab| at a = 5 and b = −7.

    Solution

    Following “Tips for Evaluating Algebraic Expressions,” first replace all occurrences of variables in the expression |ab| with open parentheses.

    \[ |a-b| = |(~)-(~)|\nonumber \]

    Secondly, replace each variable with its given value, and thirdly, follow the “Rules Guiding Order of Operations” to evaluate the resulting expression.

    \[ \begin{aligned} |a-b| = |( \textcolor{red}{5})-( \textcolor{red}{-7})| ~ & \textcolor{red}{ \text{ Substitute 5 for } a \text{ and } -7 \text{ for } b.} \\ = |5+7| ~ & \textcolor{red}{ \text{ Add the opposite: } 5-(-7)=5+7.} \\ =|12| ~ & \textcolor{red}{ \text{ Add: } 5+7=12.} \\ =12 ~ & \textcolor{red}{ \text{ Take the absolute value: } |12| = 12.} \end{aligned}\nonumber \]

    Exercise

    If a = 5 and b = −7, evaluate |2a − 3b|.

    Answer

    31

    Example 5

    Evaluate the expression

    \[ \frac{ad-bc}{a+b}\nonumber \]

    at a = 5, b = −3, c = 2, and d = −4.

    Solution

    Following “Tips for Evaluating Algebraic Expressions,” first replace all occurrences of variables in the expression with open parentheses.

    \[ \frac{ad-bc}{a+b} = \frac{(~)(~)-(~)(~)}{(~)+(~)}\nonumber \]

    Secondly, replace each variable with its given value, and thirdly, follow the “Rules Guiding Order of Operations” to evaluate the resulting expression.

    \[ \begin{aligned} \frac{ad-bc}{a+b} = \frac{( \textcolor{red}{5}) -( \textcolor{red}{-3}) ( \textcolor{red}{2})}{( \textcolor{red}{5}) + ( \textcolor{red}{-3})} ~ & \textcolor{red}{ \text{ Substitute: } 5 \text{ for } a,~ -3 \text{ for } b,~ 2 \text{ for } c,~ -4 \text{ for } d.} \\ = \frac{-20-(-6)}{2} ~ & \begin{aligned} \textcolor{red}{ \text{ Numerator: } (5)(=4)=-20,~ (-3)(2) = -6.} \\ \textcolor{red}{ \text{ Denominator: } 5+(-3)=2.} \end{aligned} \\ = \frac{-20+6}{2} ~ & \textcolor{red}{ \text{ Numerator: Add the opposite.}} \\ = \frac{-14}{2} ~ & \textcolor{red}{ \text{ Numerator: } -20+6=-14.} \\ = -7 ~ & \textcolor{red}{ \text{Divide.}} \end{aligned}\nonumber \]

    Exercise

    If a = −7, b = −3, c = −15, 15, and d = −14, evaluate:

    \[\frac{a^2+b^2}{c+d}\nonumber \]

    Answer

    −2

    Example 6

    Pictured below is a rectangular prism.

    3.2: Evaluating Algebraic Expressions (2)

    The volume of the rectangular prism is given by the formula

    \[V=LWH,\nonumber \]

    where L is the length, W is the width, and H is the height of the rectangular prism. Find the volume of a rectangular prism having length 12 feet, width 4 feet, and height 6 feet.

    Solution

    Following “Tips for Evaluating Algebraic Expressions,” first replace all occurrences of of L, W, and H in the formula

    \[ V = LWH\nonumber \]

    with open parentheses.

    \[V = (~)(~)(~)\nonumber \]

    Next, substitute 12 ft for L, 4 ft for W, and 6 ft for H and simplify.

    \[ \begin{aligned} V = (12 \text{ft})(4 \text{ft})(6 \text{ft}) \\ = 288 \text{ft}^3 \end{aligned}\nonumber \]

    Hence, the volume of the rectangular prism is 288 cubic feet.

    Exercise

    The surface area of the prism pictured in this example is given by the following formula:

    \[S = 2(W H + LH + LW) \nonumber \]

    If L = 12, W = 4, and H = 6 feet, respectively, calculate the surface area.

    Answer

    288 square feet

    Exercises

    In Exercises 1-12, evaluate the expression at the given value of x.

    1. −3x2 − 6x + 3 at x = 7

    2. 7x2 − 7x + 1 at x = −8

    3. −6x − 6 at x = 3

    4. 6x − 1 at x = −10

    5. 5x2 + 2x + 4 at x = −1

    6. 4x2 − 9x + 4 at x = −3

    7. −9x − 5 at x = −2

    8. −9x + 12 at x = 5

    9. 4x2 + 2x + 6 at x = −6

    10. −3x2 + 7x + 4 at x = −7

    11. 12x + 10 at x = −12

    12. −6x + 7 at x = 11

    In Exercises 13-28, evaluate the expression at the given values of x and y.

    13. |x|−|y| at x = −5 and y = 4

    14. |x|−|y| at x = −1 and y = −2

    15. −5x2 + 2y2 at x = 4 and y = 2

    16. −5x2 − 4y2 at x = −2 and y = −5

    17. |x|−|y| at x = 0 and y = 2

    18. |x|−|y| at x = −2 and y = 0

    19. |x − y| at x = 4 and y = 5

    20. |x − y| at x = −1 and y = −4

    21. 5x2 − 4xy + 3y2 at x = 1 and y = −4

    22. 3x2 + 5xy + 3y2 at x = 2 and y = −1

    23. |x − y| at x = 4 and y = 4

    24. |x − y| at x = 3 and y = −5

    25. −5x2 − 3xy + 5y2 at x = −1 and y = −2

    26. 3x2 − 2xy − 5y2 at x = 2 and y = 5

    27. 5x2 + 4y2 at x = −2 and y = −2

    28. −4x2 + 2y2 at x = 4 and y = −5

    In Exercises 29-40, evaluate the expression at the given value of x.

    29. \( \frac{9+9x}{−x}\) at x = −3

    30. \( \frac{9 − 2x}{−x}\) at x = −1

    31. \(\frac{−8x + 9}{−9 + x}\) at x = 10

    32. \(\frac{2x + 4}{1 + x}\) at x = 0

    33. \(\frac{−4+9x}{7x}\) at x = 2

    34. \(\frac{−1 − 9x}{x}\) at x = −1

    35. \(\frac{−12 − 7x}{x}\) at x = −1

    36. \(\frac{12 + 11x}{3x}\) at x = −6

    37. \(\frac{6x − 10}{5}\) + x at x = −6

    38. \(\frac{11x + 11}{−4}\) + x at x = 5

    39. \(\frac{10x + 11}{5}\) + x at x = −4

    40. \(\frac{6x + 12}{−3}\) + x at x = 2

    41. The formula

    \[d=16t^2\nonumber \]

    gives the distance (in feet) that an object falls from rest in terms of the time t that has elapsed since its release. Find the distance d (in feet) that an object falls in t = 4 seconds.

    42. The formula

    \[d = 16t^2\nonumber \]

    gives the distance (in feet) that an object falls from rest in terms of the time t that has elapsed since its release. Find the distance d (in feet) that an object falls in t = 24 seconds.

    43. The formula

    \[C = \frac{5(F − 32)}{9}\nonumber \]

    gives the Celcius temperature C in terms of the Fahrenheit temperature F. Use the formula to find the Celsius temperature (◦ C) if the Fahrenheit temperature is F = 230◦ F.

    44. The formula

    \[C = \frac{5(F − 32)}{9}\nonumber \]

    gives the Celcius temperature C in terms of the Fahrenheit temperature F. Use the formula to find the Celsius temperature (C) if the Fahrenheit temperature is F = 95 F.

    45. The Kelvin scale of temperature is used in chemistry and physics. Absolute zero occurs at 0 K, the temperature at which molecules have zero kinetic energy. Water freezes at 273 K and boils at K = 373 K. To change Kelvin temperature to Fahrenheit temperature, we use the formula

    \[F = \frac{9(K − 273)}{5} + 32.\nonumber \]

    Use the formula to change 28K to Fahrenheit.

    46. The Kelvin scale of temperature is used in chemistry and physics. Absolute zero occurs at 0 K, the temperature at which molecules have zero kinetic energy. Water freezes at 273 K and boils at K = 373 K. To change Kelvin temperature to Fahrenheit temperature, we use the formula

    \[F = \frac{9(K − 273)}{5} + 32.\nonumber \]

    Use the formula to change 248 K to Fahrenheit.

    47. A ball is thrown vertically upward. Its velocity t seconds after its release is given by the formula

    \[v = v0 − gt,\nonumber \]

    where v0 is its initial velocity, g is the acceleration due to gravity, and v is the velocity of the ball at time t. The acceleration due to gravity is g = 32 feet per second per second. If the initial velocity of the ball is v0 = 272 feet per second, find the speed of the ball after t = 6 seconds.

    48. A ball is thrown vertically upward. Its velocity t seconds after its release is given by the formula

    \[v = v_0 − gt,\nonumber \]

    where v0 is its initial velocity, g is the acceleration due to gravity, and v is the velocity of the ball at time t. The acceleration due to gravity is g = 32 feet per second per second. If the initial velocity of the ball is v0 = 470 feet per second, find the speed of the ball after t = 4 seconds.

    49. Even numbers. Evaluate the expression 2n for the following values:

    i) n = 1

    ii) n = 2

    iii) n = 3

    iv) n = −4

    v) n = −5

    vi) Is the result always an even number? Explain.

    50. Odd numbers. Evaluate the expression 2n + 1 for the following values:

    i) n = 1

    ii) n = 2

    iii) n = 3

    iv) n = −4

    v) n = −5

    vi) Is the result always an odd number? Explain.

    Answers

    1. −186

    3. −24

    5. 7

    7. 13

    9. 138

    11. −134

    13. 1

    15. −72

    17. −2

    19. 1

    21. 69

    23. 0

    25. 9

    27. 36

    29. −6

    31. −71

    33. 1

    35. 5

    37. 46

    39. −29

    41. 256 feet

    43. 110 degrees

    45. −409 F

    47. 80 feet per second

    49.

    i) 2

    ii) 4

    iii) 6

    iv) −8

    v) −10

    vi) Yes, the result will always be an even number because 2 will always be a factor of the product 2n.

    3.2: Evaluating Algebraic Expressions (2024)

    FAQs

    3.2: Evaluating Algebraic Expressions? ›

    Tips for Evaluating Algebraic Expressions. Replace all occurrences of variables in the expression with open parentheses. Leave room between the parentheses to substitute the given value of the variable. Substitute the given values of variables in the open parentheses prepared in the first step.

    How do you evaluate an algebraic expression? ›

    To evaluate an algebraic expression means to find the value of the expression when the variable is replaced by a given number. To evaluate an expression, we substitute the given number for the variable in the expression and then simplify the expression using the order of operations.

    What grade level is evaluating expressions? ›

    Students will first learn how to evaluate the expression as part of expressions and equations in 6th grade.

    What are 3 algebraic expressions? ›

    Types of Algebraic expression

    There are 3 main types of algebraic expressions which include: Monomial Expression. Binomial Expression. Polynomial Expression.

    How do you write an evaluate expression? ›

    Replace each variable in the expression with the specified value, and then simplify the resulting expression by specifying the order of operations. Example 1: Consider an algebraic expression x+5, Let's evaluate it for x=7. Substitute the value of x in the expression. 7+5=12.

    How do you evaluate an algebraic function? ›

    Evaluating a function means finding the value of f(x) =… or y =… that corresponds to a given value of x. To do this, simply replace all the x variables with whatever x has been assigned.

    How do you evaluate expressions in 5th grade? ›

    key idea
    1. Perform operations inside parentheses and brackets. Start with the operations in the inner parentheses or brackets, evaluating the expression from the inside out.
    2. Multiply and divide from left to right.
    3. Add and subtract from left to right.

    What grade level is algebraic? ›

    In many schools today, algebra in the eighth grade is the norm, and students identified by some predetermined standard can complete the course in seventh grade. Algebra courses are even stratified as “honors” algebra and “regular” algebra at both of these grade levels.

    How do you simplify 3 algebraic expressions? ›

    How to simplify expressions. To simplify expressions first expand any brackets, next multiply or divide any terms and use the laws of indices if necessary, then collect like terms by adding or subtracting and finally rewrite the expression.

    How to explain an algebraic expression? ›

    An expression or algebraic expression is any mathematical statement which consists of numbers, variables and an arithmetic operation between them. For example, 4m + 5 is an expression where 4m and 5 are the terms and m is the variable of the given expression separated by the arithmetic sign +.

    What is an example of evaluating? ›

    to judge or calculate the quality, importance, amount, or value of something: It's impossible to evaluate these results without knowing more about the research methods employed. [ + question word ] We shall need to evaluate how the new material stands up to wear and tear.

    What is the first step in evaluating an algebraic expression? ›

    The first step in evaluating an expression is to identify what the given values are for each variable, and then substitute those values into the expression for the variables.

    How do you verify the result of an algebraic expression? ›

    The algebraic identities are verified using the substitution method. In this method, substitute the values for the variables and perform the arithmetic operation. Another method to verify the algebraic identity is the activity method.

    How do you evaluate and solve expressions? ›

    Evaluating expressions with multiple variables involves substituting given values for each variable and simplifying the expression. By replacing variables with their corresponding values, we can easily compute the result of expressions, even for more complex examples with multiple terms and operations.

    How to write and evaluate an algebraic expression that represents the situation? ›

    An algebraic expression can be written to represent a problem situation. To evaluate an algebraic expression, a specific value for each variable is substituted in the expression, and then all the calculations are completed using the order of operations to get a single value.

    Top Articles
    Latest Posts
    Article information

    Author: Allyn Kozey

    Last Updated:

    Views: 5902

    Rating: 4.2 / 5 (43 voted)

    Reviews: 90% of readers found this page helpful

    Author information

    Name: Allyn Kozey

    Birthday: 1993-12-21

    Address: Suite 454 40343 Larson Union, Port Melia, TX 16164

    Phone: +2456904400762

    Job: Investor Administrator

    Hobby: Sketching, Puzzles, Pet, Mountaineering, Skydiving, Dowsing, Sports

    Introduction: My name is Allyn Kozey, I am a outstanding, colorful, adventurous, encouraging, zealous, tender, helpful person who loves writing and wants to share my knowledge and understanding with you.