4.3: Evaluating Algebraic Expressions (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    113691
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In this section we will evaluate algebraic expressions for given values of the variables contained in the expressions. Here are some simple tips to help you be successful.

    Tips for Evaluating Algebraic Expressions

    1. Replace all occurrences of variables in the expression with open parentheses. Leave room between the parentheses to substitute the given value of the variable.
    2. Substitute the given values of variables in the open parentheses prepared in the first step.
    3. Evaluate the resulting expression according to the Rules Guiding Order of Operations.

    Let's begin with an example.

    Example 1

    Evaluate the expression \(x^2 − 2xy + y^2\) at \(x = −3\) and \(y = 2\).

    Solution

    Following “Tips for Evaluating Algebraic Expressions,” first replace all occurrences of variables in the expression x2 − 2xy + y2 with open parentheses.

    \[ x^2 -2xy + y^2 = ( ~ )^2 -2(~)(~) + ( ~ )^2 \nonumber\nonumber \]

    Secondly, replace each variable with its given value, and thirdly, follow the “Rules Guiding Order of Operations” to evaluate the resulting expression.

    \[ \begin{aligned} x^2 -2xy + y^2 ~ & \textcolor{red}{ \text{ Original expression.}} \\ ( \textcolor{red}{-3} )^2 -2 ( \textcolor{red}{-3})( \textcolor{red}{2}) + (\textcolor{red}{2})^2 ~ & \textcolor{red}{ \text{ Substitute } -3 \text{ for } x \text{ and 2 for }y. \textcolor{red}{ \text{ Evaluate exponents first.}}} \\ 9-2(-3)(2)+4 ~ &\textcolor{red}{ \text{ Left to right, multiply } 2(-3)=-6.} \\ 9-(-6)(2)+4 ~ & \textcolor{red}{ \text{ Left to right, multiply: } (-6)(2) = -12.} \\ 9-(-12)+4 ~ & \textcolor{red}{ \text{ Add the opposite.}}\\ 9 + 12 + 4 ~ & \textcolor{red}{ \text{ Add.}} \\ 25 ~ & \end{aligned}\nonumber \]

    Exercise

    If x = −2 and y = −1, evaluate x3y3.

    Answer

    −7

    Example 2

    Evaluate the expression (ab)2 If a = 3 and b = −5, at a = 3 and b = −5.

    Solution

    Following “Tips for Evaluating Algebraic Expressions,” first replace all occurrences of variables in the expression (ab)2 with open parentheses.

    \[ (a-b)^2 = (()-())^2\nonumber \]

    Secondly, replace each variable with its given value, and thirdly, follow the “Rules Guiding Order of Operations” to evaluate the resulting expression.

    \[ \begin{aligned} (a-b)^2 = (( \textcolor{red}{3})-( \textcolor{red}{-5}))^2 ~ & \textcolor{red}{ \text{ Substitute 3 for } a \text{ and } -5 \text{ for } b.} \\ (3+5)^2 ~ & \textcolor{red}{ \text{ Add the opposite: } (3)-(-5)=3+5} \\ 8^2 ~ & \textcolor{red}{ \text{ Simplify inside parentheses: } 3+5 = 8} \\ 64 ~ & \textcolor{red}{ \text{ Evaluate exponent: } 8^2 = 64} \end{aligned}\nonumber \]

    Exercise

    If a = 3 and b = −5, evaluate a2b2.

    Answer

    −16

    Example 3

    Evaluate the expression |a|−|b| at a = 5 and b = −7.

    Solution

    Following “Tips for Evaluating Algebraic Expressions,” first replace all occurrences of variables in the expression |a|−|b| with open parentheses.

    \[ |a| - |b| = |( ~ )| - |( ~ )|\nonumber \]

    Secondly, replace each variable with its given value, and thirdly, follow the “Rules Guiding Order of Operations” to evaluate the resulting expression.

    \[ \begin{aligned} |a| - |b| = |( \textcolor{red}{5} )| - |( \textcolor{red}{-7})| ~ & \textcolor{red}{ \text{ Substitute 5 for } a \text{ and } -7 \text{ for } b.} \\ 5 - 7 ~ & \textcolor{red}{ \text{ Absolute values first: } |(5)| = 5 \text{ and } |(-7)|=7|} \\ 5+(-7) ~ & \textcolor{red}{ \text{ Add the opposites: } 5 - 7 = 5+(-7).} \\ -2 ~ & \textcolor{red}{ \text{ Add: } 5+(-7)=-2.} \end{aligned}\nonumber \]

    Exercise

    If a = 5 and b = −7, evaluate 2|a| − 3|b|.

    Answer

    −11

    Example 4

    Evaluate the expression |ab| at a = 5 and b = −7.

    Solution

    Following “Tips for Evaluating Algebraic Expressions,” first replace all occurrences of variables in the expression |ab| with open parentheses.

    \[ |a-b| = |(~)-(~)|\nonumber \]

    Secondly, replace each variable with its given value, and thirdly, follow the “Rules Guiding Order of Operations” to evaluate the resulting expression.

    \[ \begin{aligned}|a-b|~ &
    \\|( \textcolor{red}{5})-( \textcolor{red}{-7})| ~ & \textcolor{red}{ \text{ Substitute 5 for } a \text{ and } -7 \text{ for } b.}
    \\ |5+7| ~ & \textcolor{red}{ \text{ Add the opposite: } 5-(-7)=5+7.}
    \\ |12| ~ & \textcolor{red}{ \text{ Add: } 5+7=12.}
    \\ 12 ~ & \textcolor{red}{ \text{ Take the absolute value: } |12| = 12.} \end{aligned}\nonumber \]

    Exercise

    If a = 5 and b = −7, evaluate |2a − 3b|.

    Answer

    31

    Example 5

    Evaluate the expression

    \[ \frac{ad-bc}{a+b}\nonumber \]

    at a = 5, b = −3, c = 2, and d = −4.

    Solution

    Following “Tips for Evaluating Algebraic Expressions,” first replace all occurrences of variables in the expression with open parentheses.

    \[ \frac{ad-bc}{a+b} = \frac{(~)(~)-(~)(~)}{(~)+(~)}\nonumber \]

    Secondly, replace each variable with its given value, and thirdly, follow the “Rules Guiding Order of Operations” to evaluate the resulting expression.

    \[ \begin{aligned} \frac{ad-bc}{a+b} ~&
    \\ \frac{( \textcolor{red}{5}) -( \textcolor{red}{-3}) ( \textcolor{red}{2})}{( \textcolor{red}{5}) + ( \textcolor{red}{-3})} ~ & \textcolor{red}{ \text{ Substitute: } 5 \text{ for } a,~ -3 \text{ for } b,~ 2 \text{ for } c,~ -4 \text{ for } d.}
    \\ \frac{-20-(-6)}{2} ~ & \begin{aligned} \textcolor{red}{ \text{ Numerator: } (5)(=4)=-20,~ (-3)(2) = -6.}
    \\ \textcolor{red}{ \text{Denominator: } 5+(-3)=2.} ~ & \end{aligned}
    \\ \frac{-20+6}{2} ~ & \textcolor{red} { \text{ Numerator: Add the opposite.}}
    \\ \frac{-14}{2} ~ & \textcolor{red}{ \text{ Numerator: } -20+6=-14.}
    \\ -7 ~ & \textcolor{red}{ \text{ Divide to get -7.}} \end{aligned}\nonumber \]

    Exercise

    If a = −7, b = −3, c = −15, 15, and d = −14, evaluate:

    \[\frac{a^2+b^2}{c+d}\nonumber \]

    Answer

    −2

    Example 6

    Pictured below is a rectangular prism also called a cuboid in some textbooks.

    4.3: Evaluating Algebraic Expressions (2)

    The volume of the rectangular prism is given by the formula

    \[V=LWH,\nonumber \]

    where L is the length, W is the width, and H is the height of the rectangular prism. Find the volume of a rectangular prism having length 12 feet, width 4 feet, and height 6 feet.

    Solution

    Following “Tips for Evaluating Algebraic Expressions,” first replace all occurrences of of L, W, and H in the formula

    \[ V = LWH\nonumber \]

    with open parentheses.

    \[V = (~)(~)(~)\nonumber \]

    Next, substitute 12 ft for L, 4 ft for W, and 6 ft for H and simplify.

    \[ \begin{aligned} V = (12 \text{ft})(4 \text{ft})(6 \text{ft}) \\ = 288 \text{ft}^3 \end{aligned}\nonumber \]

    Hence, the volume of the rectangular prism is 288 cubic feet.

    Exercise

    The surface area of the prism pictured in this example is given by the following formula:

    \[S = 2(W H + LH + LW) \nonumber \]

    If L = 12, W = 4, and H = 6 feet, respectively, calculate the surface area.

    Answer

    288 square feet

    Exercises

    In Exercises 1-12, evaluate the expression at the given value of x.

    1. −3x2 − 6x + 3 at x = 7

    2. 7x2 − 7x + 1 at x = −8

    3. −6x − 6 at x = 3

    4. 6x − 1 at x = −10

    5. 5x2 + 2x + 4 at x = −1

    6. 4x2 − 9x + 4 at x = −3

    7. −9x − 5 at x = −2

    8. −9x + 12 at x = 5

    9. 4x2 + 2x + 6 at x = −6

    10. −3x2 + 7x + 4 at x = −7

    11. 12x + 10 at x = −12

    12. −6x + 7 at x = 11

    In Exercises 13-28, evaluate the expression at the given values of x and y.

    13. |x|−|y| at x = −5 and y = 4

    14. |x|−|y| at x = −1 and y = −2

    15. −5x2 + 2y2 at x = 4 and y = 2

    16. −5x2 − 4y2 at x = −2 and y = −5

    17. |x|−|y| at x = 0 and y = 2

    18. |x|−|y| at x = −2 and y = 0

    19. |x − y| at x = 4 and y = 5

    20. |x − y| at x = −1 and y = −4

    21. 5x2 − 4xy + 3y2 at x = 1 and y = −4

    22. 3x2 + 5xy + 3y2 at x = 2 and y = −1

    23. |x − y| at x = 4 and y = 4

    24. |x − y| at x = 3 and y = −5

    25. −5x2 − 3xy + 5y2 at x = −1 and y = −2

    26. 3x2 − 2xy − 5y2 at x = 2 and y = 5

    27. 5x2 + 4y2 at x = −2 and y = −2

    28. −4x2 + 2y2 at x = 4 and y = −5

    In Exercises 29-40, evaluate the expression at the given value of x.

    29. \( \frac{9+9x}{−x}\) at x = −3

    30. \( \frac{9 − 2x}{−x}\) at x = −1

    31. \(\frac{−8x + 9}{−9 + x}\) at x = 10

    32. \(\frac{2x + 4}{1 + x}\) at x = 0

    33. \(\frac{−4+9x}{7x}\) at x = 2

    34. \(\frac{−1 − 9x}{x}\) at x = −1

    35. \(\frac{−12 − 7x}{x}\) at x = −1

    36. \(\frac{12 + 11x}{3x}\) at x = −6

    37. \(\frac{6x − 10}{5}\) + x at x = −6

    38. \(\frac{11x + 11}{−4}\) + x at x = 5

    39. \(\frac{10x + 11}{5}\) + x at x = −4

    40. \(\frac{6x + 12}{−3}\) + x at x = 2

    41. The formula

    \[d=16t^2\nonumber \]

    gives the distance (in feet) that an object falls from rest in terms of the time t that has elapsed since its release. Find the distance d (in feet) that an object falls in t = 4 seconds.

    42. The formula

    \[d = 16t^2\nonumber \]

    gives the distance (in feet) that an object falls from rest in terms of the time t that has elapsed since its release. Find the distance d (in feet) that an object falls in t = 24 seconds.

    43. The formula

    \[C = \frac{5(F − 32)}{9}\nonumber \]

    gives the Celcius temperature C in terms of the Fahrenheit temperature F. Use the formula to find the Celsius temperature (◦ C) if the Fahrenheit temperature is F = 230◦ F.

    44. The formula

    \[C = \frac{5(F − 32)}{9}\nonumber \]

    gives the Celcius temperature C in terms of the Fahrenheit temperature F. Use the formula to find the Celsius temperature (C) if the Fahrenheit temperature is F = 95 F.

    45. The Kelvin scale of temperature is used in chemistry and physics. Absolute zero occurs at 0 K, the temperature at which molecules have zero kinetic energy. Water freezes at 273 K and boils at K = 373 K. To change Kelvin temperature to Fahrenheit temperature, we use the formula

    \[F = \frac{9(K − 273)}{5} + 32.\nonumber \]

    Use the formula to change 28K to Fahrenheit.

    46. The Kelvin scale of temperature is used in chemistry and physics. Absolute zero occurs at 0 K, the temperature at which molecules have zero kinetic energy. Water freezes at 273 K and boils at K = 373 K. To change Kelvin temperature to Fahrenheit temperature, we use the formula

    \[F = \frac{9(K − 273)}{5} + 32.\nonumber \]

    Use the formula to change 248 K to Fahrenheit.

    47. A ball is thrown vertically upward. Its velocity t seconds after its release is given by the formula

    \[v = v0 − gt,\nonumber \]

    where v0 is its initial velocity, g is the acceleration due to gravity, and v is the velocity of the ball at time t. The acceleration due to gravity is g = 32 feet per second per second. If the initial velocity of the ball is v0 = 272 feet per second, find the speed of the ball after t = 6 seconds.

    48. A ball is thrown vertically upward. Its velocity t seconds after its release is given by the formula

    \[v = v_0 − gt,\nonumber \]

    where v0 is its initial velocity, g is the acceleration due to gravity, and v is the velocity of the ball at time t. The acceleration due to gravity is g = 32 feet per second per second. If the initial velocity of the ball is v0 = 470 feet per second, find the speed of the ball after t = 4 seconds.

    49. Even numbers. Evaluate the expression 2n for the following values:

    i) n = 1

    ii) n = 2

    iii) n = 3

    iv) n = −4

    v) n = −5

    vi) Is the result always an even number? Explain.

    50. Odd numbers. Evaluate the expression 2n + 1 for the following values:

    i) n = 1

    ii) n = 2

    iii) n = 3

    iv) n = −4

    v) n = −5

    vi) Is the result always an odd number? Explain.

    Answers

    1. −186

    3. −24

    5. 7

    7. 13

    9. 138

    11. −134

    13. 1

    15. −72

    17. −2

    19. 1

    21. 69

    23. 0

    25. 9

    27. 36

    29. −6

    31. −71

    33. 1

    35. 5

    37. 46

    39. −29

    41. 256 feet

    43. 110 degrees

    45. −409 F

    47. 80 feet per second

    49.

    i) 2

    ii) 4

    iii) 6

    iv) −8

    v) −10

    vi) Yes, the result will always be an even number because 2 will always be a factor of the product 2n.

    4.3: Evaluating Algebraic Expressions (2024)

    FAQs

    How do you find the answer to an algebraic expression? ›

    To evaluate an algebraic expression, you have to substitute a number for each variable and perform the arithmetic operations. In the example above, the variable x is equal to 6 since 6 + 6 = 12. If we know the value of our variables, we can replace the variables with their values and then evaluate the expression.

    Which verbal expression best represents the algebraic expression 3n − 4? ›

    Answer and Explanation:

    The algebraic expression 3 n − 4 is best represented by the verbal expression " four less than three times a number".

    What does evaluate mean in math? ›

    To evaluate simply means finding the value of something. In mathematics, the term “evaluate” refers to finding the numerical value or result of a mathematical expression or equation.

    Is 4 an algebraic expression? ›

    Is 4 an algebraic expression? No, 4 is not an algebraic expression because an expression should have at least one variable and one operation to be algebraic.

    What are the 3 algebraic expressions? ›

    Types of Algebraic Expressions
    Type of Algebraic ExpressionMeaning
    MonomialAn expression with only one term where the exponents of all the variables are non-negative integers
    BinomialAn expression with two monomials
    TrinomialAn expression with three monomials
    PolynomialAn expression with one or more monomials
    2 more rows

    Is algebraic expression hard? ›

    The difficulties encountered by students in algebraic expression include understanding the problem, understanding the meaning of variables, and performing algebraic operations.

    How to simplify an algebraic expression? ›

    Simplifying an algebraic expression means writing the expression in the most basic way possible by eliminating parentheses and combining like terms. For example, to simplify 3x + 6x + 9x, add the like terms: 3x + 6x + 9x = 18x.

    Does evaluating mean solve? ›

    No, evaluate is not the same as solve. Evaluate is used for an expression, which DOES NOT have an equal sign. When evaluating, the value of the variable is given. Solve is used for an equation, which DOES have an equal sign.

    What is an example of evaluating? ›

    to judge or calculate the quality, importance, amount, or value of something: It's impossible to evaluate these results without knowing more about the research methods employed. [ + question word ] We shall need to evaluate how the new material stands up to wear and tear.

    What are the steps to solve algebraic expressions? ›

    How to Solve an Algebra Problem
    1. Step 1: Write Down the Problem. ...
    2. Step 2: PEMDAS. ...
    3. Step 3: Solve the Parenthesis. ...
    4. Step 4: Handle the Exponents/ Square Roots. ...
    5. Step 5: Multiply. ...
    6. Step 6: Divide. ...
    7. Step 7: Add/ Subtract (aka, Combine Like Terms) ...
    8. Step 8: Find X by Division.

    How do you evaluate an algebraic function? ›

    Evaluating a function means finding the value of f(x) =… or y =… that corresponds to a given value of x. To do this, simply replace all the x variables with whatever x has been assigned.

    What is the order in evaluating algebraic expressions? ›

    The order of operations used to solve algebraic expressions is most commonly remembered by the mnemonic device PEMDAS. This stands for parenthesis, exponents, multiplication, division, addition and subtraction. If the expression is solved using this order of operations the answer will be correct every time.

    Top Articles
    Latest Posts
    Article information

    Author: Aracelis Kilback

    Last Updated:

    Views: 5904

    Rating: 4.3 / 5 (44 voted)

    Reviews: 91% of readers found this page helpful

    Author information

    Name: Aracelis Kilback

    Birthday: 1994-11-22

    Address: Apt. 895 30151 Green Plain, Lake Mariela, RI 98141

    Phone: +5992291857476

    Job: Legal Officer

    Hobby: LARPing, role-playing games, Slacklining, Reading, Inline skating, Brazilian jiu-jitsu, Dance

    Introduction: My name is Aracelis Kilback, I am a nice, gentle, agreeable, joyous, attractive, combative, gifted person who loves writing and wants to share my knowledge and understanding with you.